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There has been a long-standing quest for readily available sources
of zerovalent niobium and tantalum complexes. The consistent
failure to generate paramagnetic 17-electron (17e) hexacarbonyl
complexes M(CQ) (M = Nb, Ta) on a synthetic scale contrasts
markedly with the availability of V(CQ) and also of the more
highly reduced 18e complexes, [M(C{), [M(CO)s]*-, and
[M(CN-2,6-MexCeH3)e] ~.2 Relatively pure Ta(CQjdppe) [dppe=
1,2-bis(diphenylphosphino)ethane], a dimer in the solid state, can
be generated on a limited scale via hydride abstraction from TaH-
(CO)(dppe)? Metal vapor techniques have yielded M(arerfe)nd
M(dmpe) [dmpe= 1,2-bis(dimethylphosphino)etharfeut only
Nb(1,3,5-MgCsH3), is available via solution chemist®. There
has been a brief report of M(2;Bipyridine); and M(1,10-phenan-
throline),® but there is a clear need for more accessible routes to
stable zerovalent niobium and tantalum complexes. 1,4-Diazabuta-
1,3-diene ¢-diimine) ligands have long been known to stabilize
transition metals in low-oxidation statéand there has been a recent
resurgence in interest in their chemistry with the heavier group 5
metals® We report herein the efficient synthesis and full charac-
terization of formally zerovalent 17e niobium and tantalum Figure 1. Molecular structure of [TaPr-dad)] (1a).
complexes, MiPr-dad}, containing the readily available 1,4-
diisopropyl-1,4-diazabuta-1,3-dier@¢-dad). These complexes are  octahedral geometry (Figure 1) with plari@r-dad ligands. The
also oxidized to diamagnetic 16e cations [Mig-dad}]*, and the Ta atom lies on a special position Y0/), and aC, axis bisects
two oxidation states are investigated using density functional theory. the C(1}-Ta—C(1) angle. Ta-N bond lengths are 2.088(6), 2.096-

Addition of Na/naphthalene (5 mol equiv) in 1,2-dimethoxy- (4), and 2.100(6) A. €N bond lengths of 1.365(7), 1.370(9), and
ethane (dme) to a dme solution of Ta@t —60 °C generates an  1.397(8) A and G-C bond lengths of 1.348(12) and 1.369(8) A
orange-brown slurry to whictPr-dad (3.5 mol equiv) was added.  syggest some enediamido characteab remain electron-rich,
Workup of the resulting dark red-brown slurry yielded iFat- exhibiting two fully reversible single-electron processes in the CV
dad); (1) as red-brown crystals in 33% yield. Dark-green Nb- (15 —1 93 and—1.03 V vs ferrocenium/ferrocene), as well as an
(iPr-dad} (1b) is more conveniently obtained from Nb@hf), irreversible oxidation proces&4, 0.12 V). Whatever the electron
and Na sand in 52% yield. Reactions have been conducted yonsity distribution within these complexes (see belda)b are
repeatedly on multigram scaledab, although extremely air 5009 the very few examples of fully characterized, readily
sensitive, are indefinitely stable under an inert atmosphere up to available, formally zerovalent Nb and Ta complexes. Both the

80 IC. '?Oth compoungs glveds.atltsgactory eleme?tal _?_anmﬁ I reductant and the nature of the ligand seem crucial to the successful
molecular 1ons are observed In the mass spectra. These formallyq ,ihagis oflb, since utilization of Li,tBu,-dad and NbGl (10:

zerovalent 17e complexes behave as paramagnets with one unpaireg. A . - . .
2 rati lds a d tic d that displ three diff t
electron f(tef = 1.66 B. M. down to 11 K forla). Pentane or toluene ra. i0) _yle S a clamagnetic dimer that displays three ditieren
coordination mode%

solutions (fluid or frozen) give a broad\t,, = 55 to 26 G) esr " . )
) - . ; Addition of AgBPh, to 1a,b generates the cation [MRr-dad)] -
signal centered af = 2.025 (La) with no resolved coupling pattern, [BPh]- [M = Ta (), Nb (2b)] as dark-violet crystalét The

indicating very little metal contribution to the SOMO. Dark-red verall X-rav molecular structutof 2a (Figure 2) is conspi |
lashows blue-shifted U¥vis absorption bands [512 (550 sh) nm overall A-ray molecuiar struc | a(Figu € )is conspicuously
similar to that ofla although there is no special position occupied.

(e 2800 L-mol~t-cm™1), 374 (6100), 304 (8900)] as compared to 72N bond | h b > 074(2) and 2.135(2) &
greenlb [636 (2700). 434 (5300), 336 (5200)la,b are isomor- a—N bond lengths vary between 2.074(2) an . (2) ANC
phous in the crystal (monoclini®2/c),1° andlaadopts a distorted bond lengths between 1.327(4) and 1.365(3) A, aﬁd:Cboqq
lengths between 1.347(4)) and 1.380(4) A. Somewhat surprisingly,

*To whom correspondence should be addressed. E-mail: (M.E.) etienne@ the Ta—N bonds in2a are essentially identical to those 1, but

lectoulouse.fr, (1.E.M.) jem15@york.ac.uk. there is a small but significant shortening of the-K bonds.
T University of York. Unusually for pseudo-octahedral 16e spec2ed) are diamagnetic
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Table 1. Structural Data for Ta(iPr,-dad)s and [Ta(iPrp-dad)s]* as
Determined by X-ray Diffraction (average) and by DFT
Calculations (Bond Lengths in A, Energies in eV)

method state Ta-N C-N Eel
2a X-ray - 2.107(2) 1.347(4) -
DFT 1A, 2.159 1.352 -
la X-ray - 2.095(6) 1.377(9) -
DFT 2A, 2.156 1.371 0.0
DFT 2A; 2.182 1.351 +0.64

A, counterpart, indicating a clear thermodynamic preference for
a ligand-based redox process. This conclusion is reinforced by the
optimized structural parameters (Table 1), where the redox-induced
changes in bond length in ti&, state are far more consistent
with experiment than those #A;.
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